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A highly water-retentive soil has most of the dissolved salts in the pore solution in 
the aeration zone, and this solution is bound to the soil skeleton. The water becomes im- 
mobile in such a soil below some minimum water content [i], which is called the minimum field 
capacity or the capillary-rupture water content, at which level the space occupied by the 
liquid phase becomes discontinuous. Under these conditions, the transfer of salt between 
layers by convection and diffusion becomes negligible, and so the salt-distribution curves 
may persist unchanged for long periods, as is frequently observed. 

When desalination is started, the initial effect is that continuity is restored in the 
liquid zone, and thus the salts become redistributed in response to convection and diffusion. 

Let m2 be the threshold water content as defined above, with ml the amount of water 
capable of moving under gravity. If the soil is desalinated by irrigation at a rate v < k, 
where k is the soil infiltration coefficient, one can estimate m~, for instance, by means 
of a formula for the flow rate in an incompletely saturated pore system [2]: 

m l  = ( m  - -  m ~ ) ( v / k ) v %  

where m is the porosity and n : 3.5 is an empirical constant. If the desalination involves 
flooding the surface, then v m k, while mt = m- m= on account of the physical meaning of 

the saturation coefficient (or water-release coefficient). 

We consider here the redistribution of the salt in the desalination zone during the 
initial stage (from the moment when the water is supplied and a moving wetted front x = xo(t) 
appears), and also in the final stage (the water input ceases, and a free surface x = xt(t) 
appears within the soil, at which level there is a specific salt content). In the latter 
case, the final salt content of the soil at a given point is determined by the concentration 

of the pore solution retained by the skeleton. 

i. Initial Stage. Let the x axis have its origin at the surface and be directed into 

the soil. 

Fick's law gives the salt flux through unit area perpendicular to the x axis as 

q = - -  D c  x + v c ,  

where D is the salt diffusion coefficient for a medium with a given pore saturation, c is 
concentration, and v is filtration rate, while we take the law of conservation of the salt 

for each elementary volume as 

- -  q~ = [ (ml  + m~)c] ,  
t 

which implies that 0< x < xo(t) = dt in the region where the solution is moving, and there 

the function c(x, t) should satisfy the differential equation 

(Ocx -- vc)x = [(ml + m~)c]t 

The salt mass flux qo through an area moving in the wetted zone 0 < x < xo (t) along the 

x axis with a speed v is given by 
n 
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qo = q - -  v.~(ma + m~)c. 

In particular (for v n dxo/dt = v/m~), we get 

qo = - - D c x - - m 2 v c / m v  

Let N(x) be the initial concentration of the pore solution bound to the soil; then through 

an area in the region xo < x < ~ there moves a salt flux VnmuN(x) at a speed Vn; we put v n = 
v/m, and equate this flux to qo to get the boundary condition at the mobile front for x = 
Xo(t): 

D% + m2vc/ml = m~vN(xo(t))/m v 

In what follows we assume that m~, mu, v and D are constants; we introduce the new indepen- 
dent variables 

= vx/D, T = v2t/(mlD), 

and for desalination by flooding with fresh water we have 

{ c~  - -  c~ = s 1 6 5  0 < ~  < '~ ;  
c = O  for ~ =  0 , ' ~ > 0 ;  
cr + m~c,/ml = q) (T) for ~ --  "c > O, 

(1.1) 

where 

s = mJ(m ,  + m2); ~(~) = m2N(Dz/v)ml. 

We represent the target function in the form 

c(~, ~) = u(~, T) exp (~/2 -- %~/4), 
and then (i.I) reduces to 

u =0 for ~=0,~>0; 

u~ d- 8u = q) ('r) exp [-c (s -- 2)/41 for ~ = i: > 0 

(8 = t,/2 -+- mJml) .  

(1.2) 

The function u(~, ~) is sought as the solution to the initial boundary-value problem 
for the thermal-conduction equation in the region ~ > 0, T > 0: 

co 

u(~, T) - -  t i 9 ( s ) ( e x p  [ (~.s)s] [ (~'.-bs)~]l 2 V h - ~  ~ k - -  e x p  4s  11 ds, 
0 

(1.3) 

where p(s) is to be determined. 

We satisfy the condition at ~ = T, to get 0(s) as defined by the integrodifferential 
equation 

co 

1 ! ( 1 " V~ 

( F  (s ,  ~ )  = dp . , . (f - -  ~)~ ~s ch ~--7- 8 p s h ~ - ;  V = 4~ 
(1.4) 

subject to the initial condition 

p ( o )  = o ,  

which follows from consistency between the limits at ~ = T = 0; by 

(1.5) 
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Lp (q~) = .['r ( t) e -ptdt  := �9 (p), 
0 

d+ioo 

t ! r (p) eV'dp = ~ (s), L2' ((~) = ~ ~ - ' ~  

we denote the forward and reverse Laplace transforms, respectively. 
tegral operator in (1.4) to get [3] 

F (s, ~) = L ~  1 [ ~ p L ~ , . ~  (~)l. 

We integrate this equation subject to (1.5) to get 

p ( s ) =  (oh s~z-2  i [ z '~-x ~ - ]  F (z, ~,) (oh -ff)  dz. 
0 

Then we insert the in- 

(1.6) 

Then substitution of (1.6) into (1.3) gives u(~, T), satisfying all the conditions of (1.2). 

2. Salt Redistribution during Gravitational Water Flow. Let x = x1(t) = v(t -- to)/m, 
be the position of the descending groundwater level, with the moment of descent below the 
free surface taken as origin (to = 0). 

Consider an area moving along the x axis in the 0 < x < x,(t) zone with speed v/m,, for 
which the salt mass flux is vm2ct(x)/m,, where c,(x) is the salt distribution in the pore 
space when the water has flowed away under gravitation. We equate this to the flux qo in 
the zone x, < x < = and bear in mind that c = c,(x) for x = x,(t) to get the following con- 
dition at the mobile boundary: 

D %  +m=vc /m ,  = m2vc/m 1. 

Then this stage is simulated by 

I c~ --  c~ = k-~c~, 0 < �9 < ~ < ~o, 
c ~ = O  for ~ = ' r > O  

[ c = c  0(~) for ~ > 0 , . ~ = 0 ,  
(2.1) 

where co(~) is the initial concentration distribution, i.e., the one produced at the end of 
the first desalination stage. We assume that Co(~) is differentiable (this restriction is 
unimportant and can be weakened). In terms of the function u(~, T) = C(~, T) exp (--~/2 + 
XT/4), the problem of (2.1) takes the form 

u~ = ~-lu~, 0 < "c < ~ < oo; 
u~ + u / 2 - - - - O  for ~ = ' r > O ;  

u = / ( ~ )  = Co(~ )exp (-- ~/2) for ~ > 0 ,  "c = 0. 
(2 .2 )  

The solution is represented as a Poisson integral: 

u (~, ~) = 2 ~  Po (s) exp --  --]- / (s) exp 
0 

where po(s) is some continuous extension of f(s) for s < 0, where 

po(O) = /(0). ( 2 . 4 )  

Then the function of (2.3) satisfies the equation and the condition for T = 0 for the problem 
of (2.2); we put p(s) = po(--s) and rewrite (2.3) as 
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We integrate by parts with (2.4) and note that 

. r_ • o r +')'1 
o-~ exp L 4~.~ J = 4- W exp L-- T J '  

to put the condition at ~ = T for u(~, m) in (2.2) as 

[ ( ) ] exp(--'rl4~,) ~ Id/ I .~ ~ dp t 
[ u ~ + ~ / 2 1 ~ : ~  ? - ~  ~ ! w + - ~ s ] e  - ~ ~ ~ ~ - ~  e 

0 

8~ 

~'~ ds = O. 

This must be obeyed for any T > 0, and for this purpose it is sufficient 

dp 1 s). [ df i ) 
e. =2- P = e k'-~-. + %2- / " 

Then (2.4) gives us by integration that 

p ( s ) = c o ( s ) e x  p s ~ 2 ---- Co(Z)e~,, i dz. 
0 

The salt distribution resulting from the gravitational flow is defined by 

q (~) ='c (g,D = --- e - ~  i *e - ~  c o(s) e • 2 1 5  -• c o(z) e2• ds 
V ~ ~ o 

(2• = 1/~, - -  1; ? = (1 - -  X)2/(4~.)). 

Examples. I. For Co(~) = exp (--a~) we get 

that p(s) satisfies 

c~ (~) ~ - •  exp  [a~ (a - -  2• 8,] {i + er r  [(• - -  a) t/-)~] } + ~ 

2. For 

[ (  = a erf  ~o Cl (~) ~ 2 |/~'~ 

fa, o < ~ < g o ;  
c~ = l b, ~ o <  ~ <  :'r 
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